
How to get Cross Sections from MIPP data

Holger Meyer

March 8, 2009

Abstract

This document describes the algorithms for extracting cross sections
from reconstructed MIPP data. We discuss the trigger and the scalers as
they relate to cross sections.

1 Introduction

The probability of an interaction between a beam particle and a target
particle is given by the cross section for the process in question. The
probability is the cross section area of the target normalized by the area
the beam is spread over. Of course the cross sections in particle physics
are determined by the forces between the interacting particles rather than
geometric cross section areas of the particles.

1.1 Cross section terminology

The exclusive cross section gives the probability of an exclusive final state,
e.g. pp → pπ+n. Inclusive cross sections give the probability of observing
some final state particles together with anything else, e.g. pp → π+X

where the X represents anything else. The ratio of two single particle
inclusive cross sections is production ratio for these particles and is sim-
pler to determine experimentally. We usually measure differential cross
sections dσ

dΩ
where dΩ is the solid angle that a final state particle moves

to. The differential cross section is a function of the polar angle θ, but
(due to rotational symmetrie around the beam axis) it does not depend
on the azimuthal angle φ (unless beam or target are polarized).

The total or integral cross section is the integral of the differential
cross section over the full solid angle, σ =

H

4π

dσ
dΩ

dΩ.
Cross sections can be expressed differential with respect to other quan-

tities relating to the final state than the solid angle. The differential cross
section dσ

dp
versus momentum of a final state particle is an example. Dou-

ble differential cross sections express the cross section as a function of two
variables.

Cross sections are measured in units of barn (1b = 10−28m2 = 10−24cm2).

1



2 Measurement of cross sections

To measure cross sections we have to determine the number of interactions
with the desired final state and the number of incident beam particles.
The cross section is determined from experimental data as follows:

dσ

dΩ
=

dNint

Nbeam · ntgt · dΩ
(1)

In this equation

• dNint is the number of interactions with a final state particle moving
into a solid angle dΩ (or having momentum dp or transverse momen-
tum dpt or whichever other differential variable characterizing the
final state)

• Nbeam is the number of incident beam particles

• ntgt = NA

Vmol
· Ltgt is the areal target density, the number of target

particles per area (NA is Avogadro’s number, Vmol is the molar
volume, molar mass divided by density), and Ltgt is the target length
along the beam direction

Ideally the experiment would send beam at the target one particle at
a time when the detector is ready to read out the event. The number of
beam particles would be counted directly and the number of interactions
would be determined from the recorded events by applying corrections for
the detection efficiency and geometric acceptance of the final state under
consideration. However, for small cross sections it is not practicable to
perform the experiment in this way because it would take too long to
acquire sufficient statistics.

Instead a steady beam of particles is send onto the target and event
readout is triggered. Scalers count the number of incident beam particles.
The total beam flux is larger than the number determined by the scaler
because two particles may pass through the beam detection device (the
T0 counters in MIPP) simultaneously, leaving only one recordable signal.
This can be corrected for in the data analysis. To keep the correction small
the beam intensity should be small compared to the minimum separation
between two hits required by the scaler. In MIPP the TBD and T01
counters and their coincidence (the beam signal) are all scaled and also
latched for each event.

2.1 Dead-time

The readout of an interaction event in the detector takes time. During
this time the trigger is self-inhibited because the ADCs and TDCs are
not capable of recording new data until the previous event has been read
out and the electronics has been cleared. During this time the detector is
blind to new interactions. This time is called dead-time. The remaining
time (when the detector is waiting for the next trigger) is the live-time.

Dead-time can be minimized or practically eliminated using dead-time

less detector readout schemes. The MIPP upgrade will take steps in this
direction. However, for a true 100% live-time fraction the TPC would
need to be sensitive all the time. This is not possible. The TPC requires

2



the gating grid to prevent space charge build-up and breakdown in the
amplification drift region near the anode wires. Thus the MIPP detector
will always have some dead-time.

The dead-time is measured by scaling an rf for the duration of interest
(a beam slow-spill in MIPP) and scaling the same rf during those times
when the trigger is inhibited, i.e. scaling the rf gated by the trigger inhibit
signal.

To determine cross sections either the number of recorded events has
to be scaled up from the live-time fraction to 1 or the entire beam flux
has to be scaled down by the live-time fraction. The second approach is
preferable.

3 Scaler counts and trigger information

in MIPP DSTs

The MIPP DSTs contain three separate TTrees in a single ROOT file.
These trees contain information on the run, the spills, and the events.
The corresponding classes are MIPPRunSummary, MIPPSpillSummary,
and MIPPEventSummary, respectively.

3.1 Run Summary

A DST usually contains a single MIPPRunSummary with global run in-
formation. The data member of interest here is

int trigps[32]; ///< Trigger prescales

This array contains the trigger prescale values for each of the 20 trigger
bits.

3.2 Spill Summary

The spill-tree contains a MIPPSpillSummary object for each spill in the
event. The class contains the following public data members of interest
here:

int run; ///< Run number

int spill; ///< spill number

int nevt; ///< number of events

int rawTrigInput[40]; ///< raw trigger scaler count

int gatedTrigBit[20]; ///< gated trigger bit scaler count

int rawTrigBit[20]; ///< raw trigger bit scaler count

int psTrigBit[20]; ///< prescaled trigger bit scaler count

int psAndGatedTrigBit[20]; ///< prescaled and gated trigger bit scaler count

The spill number spill is sequential and is also contained in each
MIPPEventSummary to link an event with the spill information. Thus
each spill can be considered a mini-subrun. When processing DSTs cuts
can be placed on the slow monitoring alarm information provided in the

3



spill summaries to cut bad spills. Then all events in these spills also have
to be cut based on their spill number.

The number of events nevt is the number of events in this beam spill.
The sum of nevt over all spill summaries in a run is less than the number
of events given in the run summary because out-of-spill calibration events
are not counted in the spill summaries.

The four arrays of 20 integers contain the scaler counts for each trigger
bit with and without the live-gate applied and before and after applying
the prescale set in the run. Trigger bits that have been disabled will
have prescaled scaler counts of 0. The gated counts will be lower than
the corresponding raw counts. Dead-time can be determined from any of
the 40 ratios of gated trigger bits to their corresponding ungated trigger
bits. The 20 ratios of prescaled scalers have low to no statistics. The
other twenty ratios will each give slightly different results. Consider for
example the time at the beginning of a spill when the detector is life until
the first event in the spill is triggered. Both raw and gated rf scalers
will increase their counts, but none of the interaction trigger scalers will
increment until the first interaction in the spill is triggered. Taking these
variations into account, it is useful to look at the ’interaction trigger life-

time’ for diagnostic purposes. The life-time relevant for cross section
determinations is the ratio of the un-prescaled raw (ungated) and gated
rf scalers. The rf (a scaled down copy of the Main Injector rf) was called
Raw Pulser and was connected to bit 12 in the trigger throughout the run,
i.e. the 13th bit counting from 0, rawTrigBit[13] and gatedTrigBit[13].
The prescale for this bit was always set to -1 (disabled).

The array rawTrigInput contains numbers scaled at the input to the
trigger. It is for diagnostic use and not needed for cross section determi-
nations.

3.3 Event Summary

The MIPPEventSummary class contains the following data members for
each event:

int spill; ///< spill number

Short_t rawtrig; ///< raw trigger word

Short_t pstrig; ///< prescale trigger word

Short_t rf_tdc[16];

The variable spill links the event to the corresponding spill summary,
allowing for cuts to be placed on a spill-by-spill basis on e.g. the slow-
monitoring alarm information (TPC HV trips, etc.) in the spill sum-
maries.

The other data members of interest here are the raw and prescaled
trigger words. The term ’word’ here is used in the computer science
meaning of ’data word’, i.e. an integer encoded in a certain number of
bits; e.g. a byte is a 8-bit data word. To test if a bit i is set in a given
event, mask the trigger word with a word that contains all zeros with a 1
at the ith position. In C++ the code fragment is

4



if(evt->rawtrig && (1<<i)) {bit_i = true;}

else {bit_i = false;}

The rf tdc contains the rf hits during this event. It allows to determine
the phase of the event relative to the Main Injector rf. It is not needed
for cross section determinations.

4 Putting it all together

—To be done— (See macros in DSTAnalysis...)

4.1 Empty target subtraction

4.2 Finite bin size correction

While the cross section formula contains differential quantities, we actu-
ally measure over a small extended range. A correction may need to be
applied if the yield is non-uniform over the range ∆Ω (or ∆p, ∆pT ,...).

5


